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LETTER TO THE EDITOR 

Long-wavelength fluctuations in the Ising spin glass 

T Temesvhrii, I Kondori and C De Dominicis$ 
t Institute for Theoretical Physics, Eotvos University, Budapest, Hungary 
$ Service de Physique Thkorique, Centre d’Etudes Nucldaires de Saclayl, 91 191 Gif-sur- 
Yvette Cedex. France 

Received 3 October 1988 

Abstract. The overlaps of spin-spin correlations inside one phase space valley and between 
different valleys are calculated in the Gaussian approximation around Parisi’s mean-field 
solution for the k ing  spin glass. The large mass of the theory is shown to be related to 
the coherence length of the longitudinal fluctuations of the order parameter inside a single 
pure state. The long-wavelength asymptotics of correlation functions is worked out in 
detail and it is shown that an exact inequality between intra- and intervalley overlaps 
breaks down below dimension d = 6 ,  signalling an internal inconsistency of the theory for 
d < 6 .  

By now we have a fairly complete picture of the infinitely long-range spin glass (see 
Mizard et al (1987) for a review). Results concerning Gaussian fluctuations about the 
mean-field solution have also become available (Sompolinsky and Zippelius 1983, 
Goltsev 1984, De Dominicis and Kondor I984,1985a), including the full set of Gaussian 
propagators for small external field h and reduced temperature r = ( T, - T ) /  T, (De 
Dominicis and Kondor 1985b, hereafter referred to as I). Although the formulae in I 
are, for h, r<< 1, exact and given in closed forms, they are extremely complicated, 
which severely limits their possible use as building blocks of a future interacting field 
theory of spin glasses and also obscures their physical content. Our purpose here is 
to express these propagators in terms of overlaps of correlation functions inside and 
between phase space valleys, which gives them a clear physical meaning and allows 
us to set up an exact inequality between them. Through a detailed analysis of the 
long-wavelength behaviour we find that this inequality breaks down below d = 6  
dimensions which is a signal of the inconsistency of the theory for d < 6 .  

We consider a standard Edwards and Anderson (1975) model with Ising spins and 
Gaussian distributed random couplings Jv of finite range and assume that the dimension 
is high enough so that the phase space structure of the system is similar to that in 
mean-field theory (many valleys with an ultrametric organisation). Fluctuations can 
be characterised by various four-point functions, of which the simplest is the overlap 
of the spin-spin correlation function (si&) in valley a with that in valley p :  

where r = rk - ri and qap = (1/ N )  Xi  ( S ~ ) ~ ( S ~ ) ,  is the usual overlap between the valleys. 
For a = p equation (1) describes correlations in a single valley. 
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In principle, Cm,(r )  could depend on the concrete realisation of the couplings Jv 
and also on the valleys a, p. It can be shown, however, that Cm,(r) is self-averaging 
(i.e. independent of the sample Jv in the thermodynamic limit) and depends on a, p 
only through the overlap qmp.  In fact, the Fourier transform 

can be calculated in the Gaussian approximation via the replica formalism and turns 
out to be the diagonal component of the propagator given in I. In the notation there: 

Cm,(P) = G 3 P )  (3) 
with x = x ( q , , )  and x ( q )  is the inverse of Parisi’s order parameter function. 

The proof of the above statements proceeds by now standard lines first followed 
by Parisi (1983) and most clearly explained by MCzard and Virasoro (1985), and will, 
therefore, be omitted here. Similar statements can be made about the other overlaps: 

and 

which are also self-averaging and depend respectively on the pure states apy  and 
apyS only through their mutual overlaps. The Fourier transforms in (4) and (5) are 
related to the off-diagonal components of the Gaussian propagator in I by 

Cmp,(P) = G X P )  (6) 

Ca,,dP) = G:;&) (7) 

with x = x(q,p), Y =.x(q,s), ZI = max[x(qm,), x ( q a s ) l ,  z2 = max[x(%,), x ( q , s ) l ,  where 

where x = x ( q u p ) ,  Y = x ( q , , )  and z = max[x(qpm), x ( q p v ) l  and 

ultrametricity makes at least two of the four variables x, y,  z , ,  z2 coincide. 
Equations (3) ,  (6) and (7) give a clear physical meaning to the Gaussian propagators. 

In what follows we wish to make the closed expressions obtained for them in I more 
explicit. The discussion will be restricted to the case of zero field, h = 0. It is important 
to remember that the results in I are based on a truncated model, first proposed by 
Parisi (1979), valid only near T,. This truncated model cannot be expected to produce 
results correctly beyond leading order in the reduced temperature T. When investigating 
the long-wavelength behaviour of the propagators it is therefore important to expand 
the results in T and keep only the leading terms. 

There are two mass scales in the theory (De Dominicis and Kondor 1983): the 
band of large masses of order m2  - T - x l  , with bandwidth - T ~ ,  and that of the small 
masses of order m2-T2-x:, reaching down to zero ( x ,  is the breakpoint of Parisi’s 
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q ( x ) ) .  The infrared behaviour of the theory depends sensitively on the magnitude of 
the wavenumber p relative to these mass scales and also on the replica variables x, y,  
z ,  , z2, so there are a large number of regions. We have made a comprehensive study 
of all of them, but can present only a fraction of the results here. 

Physically the most important case is when all replica variables go beyond the 
breakpoint x l .  In view of ( 1 ) - ( 7 ) ,  this corresponds to overlaps of correlation functions 
inside a single valley, as first noted by Kotliar et a1 (1987).  Now the propagators do 
not depend on the replica variables any more and we are left with only three different 
functions. Expanding the results in I to leading order in T we find for these in the 
range p 2  >> x:  the following simple expressions: 

Since the masses form bands, G1,2,3 should, in fact, display cuts. On the scales regarded 
here (i.e. for those p high above the small masses) these narrow bands, of width x:  - T', 
are not resolved, however, and that is why we get the simple poles, one at zero, the 
other at the large mass, given in ( 8 a ) - ( 8 c ) .  It is all the more remarkable that if we 
work out G1,2,3 in the other range, p2<< x:  (i.e. far below the upper band edge of the 
small masses) we find 3 / p z ,  3 / 2 p 2  and l / p 2 ,  respectively, which precisely coincide 
with the long-wavelength limits of ( 8 a ) - ( 8 c ) .  To leading order in T equations ( 8 a ) - ( 8 c )  
can therefore be regarded as a good representation of G1,2,3 both for p 2  >> x:  and for 
p2<< x:. Right aroundp' - x: there are corrections to ( 8 a ) - ( 8 c )  which, though explicitly 
known, are too complicated to be given here. The order of magnitude of G1,2,3 for 
p 2 - x :  is, however, still the same ( - l / x : )  as that given by ( 8 a ) - ( 8 c )  extrapolated to 
this range. 

The fact that, in the particular case of the diagonal propagator G;;, the strongest 
infrared power for x > x1 is p - 2  was already noted by De Dominicis and Kondor (1984). 

Two particularly illuminating combinations of G1,2,3 are the transverse or 'replicon' 
propagator (Bray and Moore 1987) GT = G ,  - 2G2 + G 3 ,  and the longitudinal one 
GL = G, - 4 G 2  + 3 G 3 ,  related to the non-linear susceptibility (Chalupa 1977). For these 
we find 

GT= l / p 2  ( 9 a )  

GL= 1 / ( P 2 + X , )  p2 >> x:  . ( 9 b )  

The remarkably simple form for GT is, as shown already in I, an identity, valid for all 
p and T < T,. It is equally gratifying to see that, when expanded consistently, the very 
complicated formulae in I reduce to ( 9 b ) ,  a most natural result within the Gaussian 
approximation, for the longitudinal propagator. The meaning of the large mass has 
now become clear: 6 = x;"~ is the coherence length of the longitudinal fluctuations 
of the order parameter in a single valley. 

Nevertheless, ( 9 b )  requires some comments. For p 2  << x ,  , GL becomes much smaller 
than G,,2,3. Actually, in the range of the small masses, p 2 - x : ,  the leading terms in 
G1,2,3 cancel exactly in the special combination GL,  which is therefore determined by 
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the next corrections. Subleading terms are, however, not controlled reliably by the 
truncated model, so we are, in fact, unable to calculate GL for p z  6 x: . It may very 
well be that if we were able to go beyond the truncated model we could extend the 
range of the simple result for GL also to p2<< x:, just as with Gl,2,3. 

As we have already mentioned, some of the results above were already known. 
Perhaps the most important new ingredients we have added here are the precise values 
of the numerical coefficients and the scaling with x1 in (8a)-(8c),  which lead to the 
transparent result for GL, and thereby to the interpretation of the large mass. Equations 
(8a)- (8c)  and (sa, b), in conjunction with (1)-(7) providing their physical interpreta- 
tion, given an (almost) full description of the long-wavelength Gaussian fluctuations 
in a single valley near T,.  

What remains to be understood is the behaviour in the range p z  - x:. The deviations 
from the simple results (8) and (9) observed there depend on the small masses whose 
meaning is at present unclear to us. 

The range of dimensions where the many-valley picture is valid and where, accord- 
ingly, these results could represent at least a sensible zeroth-order approximation, is 
not known at the present time. (We make some remarks on this question at the end 
of this letter.) On the basis of numerical evidence, phenomenological scaling and 
renormalisation group ideas it has been argued (see Fisher and Huse (1988) for a most 
detailed exposition and Bray and Moore (1987) for a review of earlier work along 
these lines) that real, d = 3, short-range spin glasses have a much simpler phase space 
structure, with (up to an overall reflection) a single pure state. If a meaningful 
comparison between these two theories, based on completely different physical pictures, 
can be made at all, it must be made between the phenomenological 'single-valley' 
theory and the single-valley predictions of the many-valley theory. In doing so one 
cannot help noticing some basic similarities: both theories predict a massless phase 
for all T <  T,, simple scaling forms for Gl,2,3 and GT, and the cancellation of the 
leading singularity in GL. 

In addition to the single-valley results one also needs, for the complete characterisa- 
tion of correlations in the many-valley picture, the intervalley overlaps of correlation 
functions. According to (1)-(7), intervalley overlaps correspond to some or all the 
replica variables going below the breakpoint x1 . 

The simplest propagator (and the only one that we are able to discuss here in any 
detail) is the diagonal one, G;:. Let us first assume that x is neither zero nor very 
close to x, . Then we have two (overlapping) regions: p 2  >> x: and pz<< x1 . For p 2  >> x: 
the propagator can be cast into the form 

where f is a smooth scaling function with limiting behaviour 

for p 2  >> x, and any x 

For pz<< x1 we have 
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with 

In the range of the overlap, x:<< p2<< x,, ( loa) ,  ( ~ O C ) ,  ( l l a )  and ( 1  l b )  give, of course, 
the same result for G;;. The essence of the above is that around and above the large 
masses the scaling power of G;; is p - 2  and p scales with the large mass; around and 
below the band edge of the small masses the scaling power is p - 4  and p scales with 
the small mass; in between there is a smooth transition. 

The scaling functions f and g are explicitly known but are too complicated to be 
recorded here. 

Considering now valleys with zero overlap, i.e. x = 0, we find 

Equations (loa)-( 1Oc) and (12b) are examples of a general finding: whenever p 
is much larger than the small-mass scale, the scaling power of G is irrespective 
of the value of the replica variables. This means that the qualitative features of the 
infrared behaviour of the overlaps of correlation functions between two valleys are, 
except on the extreme long length scales, similar to those inside a single valley, even 
if the overlap of the local magnetisations is small. 

Again, most of the qualitative features in (10)-(12) have been known for some 
years (see De Dominicis and Kondor (1984) and, for (12a), also Sompolinsky and 
Zippelius (1983)), but the values of the coefficients and the range of validity of the 
various infrared powers have not previously been published. 

An interesting question is the overlap between two different but very close valleys, 
corresponding to ( x l  - x ) / x ,  << 1.  Then (x, -x)”’>> [ x I ( x I  -x)]”’ >> (x, - x )  enter as 
new scales and the infrared behaviour becomes fairly complicated. We content our- 
selves by noting that, for p >> ( x ,  - x )  GY goes over into G:;”’, i.e. on length scales 
shorter than (x, - x ) - ” ~  the overlap of correlation functions between the two valleys 
is the same as inside a single valley, and it is only on scales longer than this distance 
that we can resolve them. 

As for the off-diagonal propagators, they show so much detail that it is quite 
impossible to display any meaningful selection of the results. We stress, however, that 
we have made a thorough study of all the off-diagonal components and found the 
same general features as for Gtf: for x:<< p2<< 1,  i.e. for p far above the small mass 
band, the dominant infrared power is always P - ~ ,  while in the extreme long-wavelength 
limit, p2<< x : ,  the infrared singularity depends on the replica variables in a complicated 
manner, but there is no propagator whose Fourier transform would decay with distance 
slower than l/rd-4. 

This last statement contradicts a result by Goltsev (1986) who claims to have found 
a stronger p-6-like divergence in one of the propagators (in our notation G:$:) for 
which he finds 4 x , (  1 - x , ) / p 6  instead of ( 8 c ) .  We checked his paper carefully and 
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found general agreement up to his equation (20). At that point, with a quick reference 
to his equation (4), he gives a result for one of the components of the propagator 
(G;:,  x < y ,  z in our notation) which we claim is wrong, along with all its corollaries, 
including the power P - ~ .  Though he does not give sufficient details to allow us to 
pinpoint the error, its source can be guessed with a fair degree of certainty. 

His equation (4), when written out in detail, is a set of seven coupled integral 
equations for the different components of the propagator. This set is not included in 
this paper, but had been published earlier in I .  Now one may notice that one of the 
seven equations, equation (4) in I ,  has such a structure that the particular propagator 
G::, x < y ,  z, can be isolated from the rest by taking the second derivative WRT one 
of the upper variables, say y. The resulting differential equation is trivially solved and 
yields sinh[(x, - y ) / p  +yo]  for the y dependence of G::, as in Goltsev’s equation (21), 
with yo a constant. (Incidentally, there is an obvious misprint in the definition of yo 
as given below his equation (20): the correct expression is yo = tanh-’[ p / (  1 - xl)]  
instead of tanh as printed.) Now one may be tempted to invoke the symmetry of GY,: 
in y and z (which is true) and conclude that G:: is of the form F J x )  sinh[(x, - y ) / p +  
yo] sinh[(x, - z ) / p  +yo]  which would be precisely Goltsev’s equation (21). This con- 
clusion is wrong, however. From the fact that even if a function GYZ is separable and 
symmetric in its variables it does not follow that it is of the form GYL = f ( y ) f ( z ) .  It 
may well be 

in which case the information gained about f does not tell us anything about g. As it 
happens, GE, not unusually for a Green function, depends on y and z like (13), but 
this can only be seen by studying, as in I, the full set of equations, instead of picking 
a single one of them. 

Coming back to the discussion of the long-distance behaviour of the propagators 
we would like to draw attention to a strongly counterintuitive feature of our results: 
we invariably find the strongest infrared singularities for the smallest overlaps, which 
means that the slower the overlap of correlations between two valleys falls off with 
distance the further apart the valleys are in phase space. This is clearly paradoxical: 
the power-law-like falloff of overlaps is already a testimony of the strong correlation 
between the valleys, but two states that are far apart from the point of view of their 
local magnetisation distribution cannot have a larger overlap between their spin-spin 
correlation functions than the self-overlap of the correlation function inside a single 
state. In other words, for the overlaps defined in (1) the inequality 

CO, ( r )  ’ CaF ( r )  a # P  (14) 

must evidently hold for any r. According to ( l ) ,  the C,, and Cap in (14) are made 
up of the constants q,, and q,@, respectively, and the Fourier integrals. While the 
latter, with the infrared divergence getting stronger as qap decreases, would tend to 
reverse the inequality, this is overcompensated by the constant terms. Hence the 
resolution of the apparent paradox is that, though the overlap of correlations between 
distant valleys does indeed fall off more slowly, it falls off to a smaller constant, so in 
the end inequality (14) can be satisfied. 

Whether it will actually be satisfied depends on the dimension, however. Assuming, 
for simplicity that x is not very close to x1 it follows from the results in ( s a )  and ( l l a )  
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that in the range r -  I / x ,  equation (14) is roughly like 

constant x2 -_  constant x: q ( x , ) 2 +  - -_ + c o n s t a n t x ~ f - ~ > q ( x ) ~ +  r d - 4  - + c o n ~ t a n t x x f - ~  
4 4 

(15) 

As long as d > 6 ,  this is always satisfied (x  < x, << l), but for d < 6 the last term, X Y - ~ ,  
becomes the largest of all and the inequality is violated ! 

The breakdown of an obvious inequality can hardly be taken for anything but a 
signal that something goes seriously wrong with the many-valley picture in d = 6 .  In 
addition, this argument is not the only one that points to the special role of d = 6 .  The 
failure of locating a stable fixed point in the E = 6 - d expansion for the Almeida- 
Thouless transition (Bray and Roberts 1980) and other considerations led Moore and 
Bray (1985) to the suggestion that d = 6 ,  usually believed to be the upper critical 
dimension for spin glasses, may, at the same time, be the lower critical dimension for 
the Parisi-type order, while an unpublished result by De Dominicis and Kondor 
(reviewed in part by Kondor (1985)) showed that the first loop correction to q ( x )  
becomes meaningless below d = 6 .  We do not believe that either or all of these 
arguments are strong enough to definitely rule out the possibility of some kind of 
many-valley structure below d = 6 ,  but they are certainly strong enough to show that 
without a major reorganisation of the setup of the theory it will not be possible to 
continue it to d < 6 .  The observation about the breakdown of inequality (14) in d = 6 
may be regarded as the most important result of the above investigation of the intervalley 
correlations. 

One of us (IK) is grateful to M MBzard for valuable discussions. Financial support 
for IK and TT from grants by the Hungarian Academy of Sciences (AKA) and by the 
National Science Fund (OTKA) is also acknowledged. 
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